Open Access Open Access  Restricted Access Subscription or Fee Access

Natural Anthocyanins Based Dye Sensitized Solar Cell: A Review Paper

Fatma B Hamad


Anthocyanins are anthocyanidins (phenyl-2-benzopyrilium) coordinated with glycosides at position 3 and/or 5. The carbonyl and hydroxyl groups of anthocyanin molecules can be chemically bound on to the surface of semiconductors thereby providing favourable condition for charge injection. Generally, bare wide band gap semiconductors exhibit no absorption in the visible range. However, after coordination with dye molecules, the absorption related to both transitions from Valence Band (VB) to Conduction Band (CB) and from Highest Occupied Molecular Orbital (HOMO) to Lowest Unoccupied Molecular Orbital (LUMO) are revealed implying the sensitization of photoanode. Anthocyanins have proven to be among the most versatile photosensitizers of wide band gap semiconductors in the Dye Sensitized Solar Cells (DSSCs). This paper reviews the potential of anthocyanin pigments from different sources as photosensitizers of wide band gap semiconductor in DSSCs. The review focuses on the influence of different parameters such as the nature of the dye and its preparation, type and morphology of photoelectrode, nature of electrolyte, additives and co-absorbers on performance of DSSCs.


Anthocyanins, DSSCs, Solar Energy, Solar energy efficiency

Full Text:



BintiZulkifili, A., N. T. Kento, M. Daiki & A. Fujiki. 2015. The Basic Research on the Dye-Sensitized Solar Cells (DSSC). J. Clean Energy Technol., 3(5): 382–387.

Brouillard, R. 1988. Flavonoids and Flower Colour. J. B. Harborne (ed.). In the Flavonoids. Advances in Research Since 1980. London: Chapman and Hall, p. 525.

Buraidah, M. H., L. P. Teo, S. R. Majid, Yahya, R., R. M. Taha & A. K. Arof. 2010. Characterizations of Chitosan-Based Polymer Electrolyte Photovoltaic Cells. Int. J. Photoenergy, Volume 2010, Article ID 805836, 7 pages.

Buraidah, M. H., L. P. Teo, S. N. F. Yusuf, M. M. Noor, , M. Z. Kufian, M. A. Careem, S. R. Majid, R. M. Taha & A. K. Arof. 2011. TiO2/Chitosan-NH4I(+I2)-BMII-Based Dye-Sensitized Solar Cells with Anthocyanin Dyes Extracted from Black Rice and Red Cabbage. Int. J. Photoenergy, Volume 2011, Article ID 273683, 11 pages.

Calogero, G., J. Yum, A. Sinopoli, G. Di Marco, M. Gratzel & M. Khaja Nazeeruddin,. 2012. Anthocyanins and Betalains as Light-harvesting Pigments for Dye-sensitized Solar Cells, Sol. Energy, 86: 1563–1575.

Calogero, G., A. Bartolotta, G. Di Marco, A. Di Carlo & F. Bonaccorso. 2015. Vegetable-based Dye-Sensitized Solar Cells. Chem. Soc. Rev., 44: 3244–3294.

Calogero, G. & G. Di Marco. 2008. Red Sicilian Orange and Purple Eggplant Fruits as Natural Sensitizers for Dye-sensitized Solar Cells. Sol. Energy Mat. Sol. Cells, 92: 1341–1346.

Calzolari, A. 2015. Sensitization of ZnO Surface through Cyanidin Functionalization. J. Self-Assembly Mol. Electronic, 3: 1–12.

Cherepy, N. J., G. P. Smestad, M. Gratzel & J. Z. Zhang. 1997. Ultrafast Electron Injection: Implications for a Photoelectrochemical Cell Utilizing an Anthocyanin Dye-Sensitized TiO2 Nanocrystalline Electrode. J. Phys. Chem. B, 101: 9342–9351.

Chien, C. & B. Hsu. 2013. Optimization of the Dye-sensitized Solar Cell with Anthocyanin as Photosensitizer. Sol. Energy, 98: 203–211.

Dai, Q. & J. Rabani. 2001. Photosensitization of Nanocrystalline TiO2 Films by Pomegranate Pigments with Unusually High Efficiency in Aqueous Medium. Chem. Commun., 2142–2143,

—. 2002a. Unusually Efficient Photosensitization of Nanocrystalline TiO2 Films by Pomegranate Pigments in Aqueous Medium. New J. Chem., 26: 421–426.

—. 2002b. Photosensitization of Nanocrystalline TiO2 Films by Anthocyanin Dyes. J. Photochem. Photobiol. A, 148: 17–24.

Delgado-Vargas, F., A. R. Jiménez & O. Paredes-López. 2000. Natural Pigments: Carotenoids, Anthocyanins & Betalains - Characteristics, Biosynthesis, Processing & Stability. Cri. Rev. Food Sci. Nutrition, 40(3): 173–289.

Dumbrava, A., A. Georgescu, , G. Damache, , C. Badea, , I. Enache, C. Oprea & M. A. Gîrtu. 2008. Dye-sensitized Solar Cells Based on Nanocrystallinetio2 and Natural Pigments, J. Optoelectron. Adv. Mat. 10(11): 2996–3002.

Ehret, A., L. Stuhl & M.T. Pitler,. 2001. Spectral Sensitization of TiO2 Nanocrytalline Electrodes with Aggregated Cyanine Dyes. J. Phys. Chem. B, 105: 9960–9965.

Eisenberg, R. & D. G. Nocera. 2005. Preface: Overview of the Forum on Solar and Renewable Energy. Inorg. Chem., 44, 6799–6801.

El-Agez, T. M., A. A. El Tayyan, A. S. Al-Kahlout, A. Taya & M. S. Abdel-Latif. 2012. Dye-Sensitized Solar Cells Based on ZnO Films and Natural Dyes. Int. J. Mat. Chem. 2(3): 105–110.

Fernando, J. M. R. C. & G. K. R. Senadeera,. 2008. Natural Anthocyanins as Photosensitizers for Dye-sensitized Solar Devices. Curr. Sci., 95: 663–664.

Fossen, T., L. Cabrita & É. M. Andersen. 1998. Colour and Stability of Pure Anthocyanins Influenced by pH Including the Alkaline Region. Food Chem. 63(4): 435–440.

Francis, F. J. 1989. Anthocyanins. Crit. Rev. Food Sci. Nutr. 28: 273–314.

Furukawa, S., H. Iino, T. Iwamoto, K. Kukita & S. Yamauchi. 2009. Characteristics of Dye-Sensitized Solar Cells Using Natural Dye. Thin Solid Films, 518: 526–529.

Garcia, C. G., A. S. Polo & N. Y. M. Iha. 2003. Fruit Extracts and Ruthenium Polypyridinic Dyes for Sensitization of TiO2 in Photoelectrochemical Solar Cells. J. Photochem. Photobiol. A, 160: 87–91.

Giusti, M. M., L. E. Rodri´guez-Saona & R. E. Wrolstad. 1999. Molar Absorptivity and Color Characteristics of Acylated and Non-AcylatedPelargonidin-Based Anthocyanins, J. Agric. Food Chem. 47: 4631-4637.

Gokilamani, N., M. Thambidurai, T. S. Senthil, N. Muthukumarasamy, A. Ranjitha, D. Velauthapillai & R. Balasundaraprabhu. 2013. Dye-sensitized Solar Cells with Natural Dyes Extracted from Rose Petals. J. Mater Sci: Mater Electron, 24: 3394–3402.

Grätzel, M. 2003. Dye-sensitized Solar Cells. J. Photochem. Photobiol. C., 4: 145–153. —. 2001. Photoelectrochemical Cells, Nature, 414: 338–344.

Hao, S., J., Wu, Y. Huang & J. Lin. 2006. Natural Dyes as Photosensitizers for Dye-sensitized Solar Cell. Sol. Energy, 80: 209–214.

Harborne, J. B. 1988. The Flavonoids: Recent Advances. In T. W. Goodwin, (ed.). Plant Pigments. London: Academic Press, pp. 298–343.

Hasoon, S. A., M.S. Raad, Al-Haddad, O. T. Shakir, I. M. Ibrahim. 2015. Natural Dye-Sensitized Solar Cell Based on Zinc Oxide. Int. J. Scient. Eng. Res., 6(5): 137–142.

Hernández-Martínez, A. R., M. Estevez, S. Vargas, F. Quintanilla & R. Rodríguez. 2012. Natural Pigment-Based Dye-Sensitized Solar Cells. J. Appl. Res. Tech., 10(1): 38–47.

Horiuchi, T., H. Miura, K. Sumioka & S. Uchida. 2004. High Efficiency of Dye-sensitized Solar Cells Based on Metal-free Indoline Dyes. J Am Chem Soc., 126: 12218–12219.

Hoshino, T. 1991. An Approximate Estimate of Self-Association Constantsand the Self-stacking Conformation of Malvinquinonoidal Bases Studied by H NMR. Phytochem., 30: 2049–2055.

Hug, H., M. Bader, P. Mair & T. Glatzel. 2014. Biophotovoltaics: Natural Pigments in Dye-sensitized Solar Cells. Appl. Energy. 115: 216–225.

Jackman, R. L. & J. L. Smith. 1996. Anthocyanins and Betalains. In G. A. F. Hendry & J. D. Houghton (eds.), Natural Food Colorants, 2nd (ed.). Blackie A & P: Great Britain; Chapter 8.

Jackman, R. L., R. Y. Yada, M. A. Tung & R. A. Speers. 1987. Anthrocyanins as Food Colorants: A Review. J. Food Biochem., 11: 201–247.

Jeong, H., Y. Lee, Y. Kim & M. Kang. 2010. Enhanced Photoelectric Efficiency by Surface Modification of TiO2 Thin Film Using Various Acidic Species. Korean J. Chem. Eng. 27: 1462–1468.

Kelly, C. A. & G. J. Meyer. 2001. Excited State Processes at Sensitized Nanocrystalline Thin Film Semiconductor Interfaces. Coord. Chem Rev., 211: 295–315.

Kim, H., Y. Bin, S. N. Karthick, K.V. Hemalatha, C. Justin Raj, S. Park & G. Vijayakumar, 2013. Natural Dye Extracted from Rhododendron Species Flowers as a Photosensitizer in Dye Sensitized Solar Cell. Int. J. Electrochem. Sci., 8: 6734–6743.

Liang Han, F. & Y. Xu. 2015. Effect of the Structure of Seven Anthocyanins on Self-association and Colour in an Aqueous Alcohol Solution. S. Afr. J. Enol. Vitic., 36(1): 105–116.

Lapornik, B., M. Prosek & A. Golc Wondra. 2005. Comparison of Extracts Prepared from Plant By-products using Different Solvents and Extraction Time. J. Food Engineer, 71: 214–222.

Leydet, Y., R. Gavara, V. Petrov, A. M. Diniz, A. J. Parola, J. C. Lima & F. Pina. 2012. The Effect of Self-aggregation on the Determination of the Kinetic and Thermodynamic Constants of the Network of Chemical Reactions in 3-glucoside Anthocyanins. Phytochem. 83: 125–135.

Luo, P., H. Niu, G. Zheng, X. Bai, M. Zhang & W. Wang. 2009. From Salmon Pink to Blue Natural Sensitizers for Solar Cells: Canna indicaL., Salvia Splendens, Cowberry and Solanumnigrum L. Spectrochimica. Acta Part A, 74: 936–942.

McConnell, R. D. 2002. Assessment of the Dye Sensitized Solar Cell. Renew. Sust. Energy Rev., 6: 273–295.

Meng, S., J. Ren & E. Kaxiras. 2008. Natural Dyes Adsorbed on TiO2 Nanowire for Photovoltaic Applications: Enhanced Light Absorption and Ultrafast Electron Injection, Nano Lett., 8(10): 3266–3272.

Nazeeruddin, M. K., A. K. Nazeeruddin, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos & M. Gratzel. 1993. Conversion of Light to Electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) Charge-transfer Sensitizers (X = Cl-, Br-, I-, CN- & SCN-) on Nanocrystalline Titanium Dioxide Electrodes. J. Am. Chem. Soc.,115: 6382–6390.

Nazeeruddin, M. K., P. Pechy, , P. Liska, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, L. Cevey, E. Costa, V. Shklover, , Spiccia, L. G. B. Deacon, C. A. Bignozzi & M. Gratzel. 2001. Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells. J. Am. Chem. Soc., 123: 1613–1624.

Narayan, M. R. 2012. Dye Sensitized Solar Cells Based on Natural Photosensitizers. Renew. Sust. Energy. Rev. 16: 208–215.

Oliveira, J., C. Santos-Buelga, A. Silva, V. Freitas & N. Mateus. 2006. Chromatic and Structural Feature of Blue Anthocyanin Derived Pigments Present in Port Wine. Anal. Chim. Acta 563: 2–9.

O’Regan B. O. & M. Gratzel. 1991. A Low Cost, High-Efficiency Solar Cell Based on Dye Sensitized Colloidal TiO2 Film. Nature, 353: 737–740.

O’Regan, B. O. and D. T. Schwartz. 1995. Efficient Photo-Hole Injection From Adsorbed Cyanine Dyes Into Electrodeposited Copper (I) Thiocyanate Thin Films. Chem. Mater, 7: 1349–1354.

Polo, A. S. & N. Y. M. Iha. 2006. Blue Sensitizers for Solar Cells: Natural Dyes from Calafate and Jaboticaba. Sol. Energy Mat. Sol., Cells 90: 1936–1944.

Pooman, S. & R. M. Mehra. 2007. Effect of Electrolytes on the Photovoltaic Performance of a Hybrid Dye ZnO Solar Cell. Sol. Energy Mater. Sol. Cells, 91: 518–524.

Quina, F. H., P. F. Moreira Jr., C. Vautier-Giongo, D. Rettori, R. F. Rodrigues, A. A. Freitas, P. F. Silva & A. L. Maçanita,. 2009. Photochemistry of Anthocyanins and Their Biological Role in Plant Tissues. Pure Appl. Chem., 81(9): 1687–1694.

Roy, M. S., P. Balraju, M. Kumar & G. D. Sharma. 2008. Dye-sensitized Solar Cell Based on Rose Bengal Dye and Nanocrystalline TiO2. Sol. Energy Mat. Sol. Cells, 92: 909–913.

Singh, L. K., T. Karlo & A. Pandey. 2013. Begonia Dye as an Efficient Anthocyanin Sensitizer. J. Renew. Sust. Energy, 5, 043115: 1–10.

Sirimanne, P. M., M. K. I. Senevirathna, E.V.A. Premalal, P. K. D. D. P. Pitigala, V. Sivakumar & K. Tennakone. 2006. Utilization of Natural Pigment Extracted from Pomegranate Fruits as Sensitizer in Solid-state Solar Cells. J. Photochem. Photobiol. A 177: 324–327.

Tatay, S., S. A. Haque, B. O’Regan, J. R. Durrant, W. J. H. Verhees, J. M. Kroon, A. Vidal-Ferran, P. Gavina & E. Palomares. 2007. Kinetic Competition in Liquid Electrolyte and Solid-state Cyanine Dye Sensitized Solar Cells. J. Mater. Chem., 17: 3037–3044.

Tennakone, K., G. R. R. A. Kumara, A. R. Kumarasinghe, K. G. U. Wijayantha & P.M. Sirimanne. 1995. A dye-sensitized Nano-porous Solid-state Photovoltaic Cell. Semicond. Sd. Technol., 10: 1689–1693.

Tennakone, K., G. R. R. A. Kumara & K. G. U. Wijayantha. 1996. The Suppression of the Recombination of Photogenerated Carriers in a Dye-sensitized Nano-porous Solid-state Photovoltaic Cell, Semicond. Sci. Technol., 11: 1737–1739.

Tennakone, K., G. R. R. A. Kumara, I. R. M. Kottegoda & K. G. U. Wijayantha. 1997(a). The Photostability of Dye-sensitized Solid State Photovoltaic Cells: Factors Determining the Stability of the Pigment in a Nanoporous n-TiO2/cyanidin/p-CuI cell. Semicond. Sci. Technol. 12: 128–132.

Tennakone, K., A. R. Kumarasinghe, G. R. R. A. Kumara, K. G. U. Wijayantha & P. M. Sirimanne. 1997. Nanoporous TiO2 Photoanode Sensitized with the Flower Pigment Cyaniding. J. Photochem. Photobio. A., 108: 193–195.

Terahara, N., N. Saito, T. Honda, K. Tokis & Y. Osajima. 1990. Acylated Anthocyanins of Clitoria Ternatea Flowers and their Acyl Moieties. Phytochem., 29: 949–953.

Vinodgopal, K., Dahlgren, H. R. L. Xiao, A. G. Lappin, L. K. Patterson & P. V. Kamat. 1995. Photochemistry of Ru(bpy)2(dcbpy)2+ on Al2O3 and TiO2 Surfaces. An Insight into the Mechanism of Photosensitization. J. Phys. Chem., 99: 10883–10889.

Wang, Z. S., Y. Cui, Y. Dan-oh, C. Kasada, A. Shinpo & K. Hara. 2007. Thiophene-Functionalized Coumarin Dye for Efficient Dye-Sensitized Solar Cells: Electron Lifetime Improved by Coadsorption of Deoxycholic Acid. J. Phys. Chem. C., 111: 7224–7230.

Yao, S., Y. Xu, Y. Zhang & Y. Lu. 2013. Black Rice and Anthocyanins Induce Inhibition of Cholesterol Absorption in Vitro. Food Funct., 4: 1602–1608.

Zhou, H., L. Wu, Y. Gao & T. Ma. 2011. Dye-sensitized Solar Cells Using 20 Natural Dyes as Sensitizers. J. Photochem. Photobiol. A., 219: 188–194.


  • There are currently no refbacks.